FECG Extraction Based on Least Square Support Vector Machine Combined with FastICA

نویسندگان

  • xiu-Juan Pu
  • Liang Han
  • Qian Liu
  • An-Yan Jiang
چکیده

A new method based on least square support vector machine (LSSVM) combined with FastICA is proposed to extract the fetal electrocardiogram (FECG) from the abdominal signals of a pregnant woman. Firstly, the LSSVM is applied to estimate the maternal electrocardiogram (MECG) component in the multiplex abdominal signals. Then the optimal estimation of multiplex noise-added FECG is obtained by removing the estimated MECG component from the multiplex abdominal signals. Finally, the FastICA is applied to extract the FECG from the multiplex noise-added FECG. The proposed method is validated by the experiments on real electrocardiogram (ECG). The visual results, signal-to-noise ratio (SNR) and training time are used to evaluate the performance of the FECG extraction methods. The experimental results indicate that the FECG is effectively extracted from the abdominal signals utilizing proposed method.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Modeling of Corrosion-Fatigue Crack Growth Rate Based on Least Square Support Vector Machine Technique

Understanding crack growth behavior in engineering components subjected to cyclic fatigue loadings is necessary for design and maintenance purpose. Fatigue crack growth (FCG) rate strongly depends on the applied loading characteristics in a nonlinear manner, and when the mechanical loadings combine with environmental attacks, this dependency will be more complicated. Since, the experimental inv...

متن کامل

Application of Genetic Algorithm Based Support Vector Machine Model in Second Virial Coefficient Prediction of Pure Compounds

In this work, a Genetic Algorithm boosted Least Square Support Vector Machine model by a set of linear equations instead of a quadratic program, which is improved version of Support Vector Machine model, was used for estimation of 98 pure compounds second virial coefficient. Compounds were classified to the different groups. Finest parameters were obtained by Genetic Algorithm method ...

متن کامل

Determination of 137Ba Isotope Abundances in Water Samples by Inductively Coupled Plasma-optical Emission Spectrometry Combined with Least-squares Support Vector Machine Regression

A simple and rapid method for the determination of 137Ba isotope abundances in water samples by inductively coupled plasma-optical emission spectrometry (ICP-OES) coupled with least-squares support vector machine regression (LS-SVM) is reported. By evaluation of emission lines of barium, it was found that the emission line at 493.408 nm provides the best results for the determination...

متن کامل

Sustainable Supplier Selection by a New Hybrid Support Vector-model based on the Cuckoo Optimization Algorithm

For assessing and selecting sustainable suppliers, this study considers a triple-bottom-line approach, including profit, people and planet, and regards business operations, environmental effects along with social responsibilities of the suppliers. Diverse metrics are acquainted with measure execution in these three issues. This study builds up a new hybrid intelligent model, namely COA-LS-SVM, ...

متن کامل

Hybrid Simulation of a Frame Equipped with MR Damper by Utilizing Least Square Support Vector Machine

In hybrid simulation, the structure is divided into numerical and physical substructures to achieve more accurate responses in comparison to a full computational analysis. As a consequence of the lack of test facilities and actuators, and the budget limitation, only a few substructures can be modeled experimentally, whereas the others have to be modeled numerically. In this paper, a new hybrid ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • J. Inf. Sci. Eng.

دوره 33  شماره 

صفحات  -

تاریخ انتشار 2017